Hypoxia-Pretreated Human MSCs Attenuate Acute Kidney Injury through Enhanced Angiogenic and Antioxidative Capacities
نویسندگان
چکیده
Hypoxia preconditioning has been confirmed as an effective strategy to enhance the therapeutic potentials of mesenchymal stem cells (MSCs), such as for myocardial ischemia. However, whether hypoxia preconditioning would produce beneficial effects on MSC-based renal repair has not been demonstrated. In the study, we aimed to determine the feasibility and efficacy of hypoxia preconditioning to enhance MSC-based therapy of acute kidney injury (AKI). MSCs were isolated from human adipose tissues. The paracrine effects of MSCs under normoxia and hypoxia were determined in vitro. Rats of AKI were induced by kidney I/R surgery and randomly divided into three groups: I/R control receiving PBS injection; MSC group receiving normal MSC injection; hypoMSC group receiving hypoxia-preconditioned MSC injection. It was demonstrated in vitro that paracrine effects of MSCs were significantly enhanced, especially angiogenic factors. Dihydroethidium (DHE) staining showed that antioxidative activities of MSCs were significantly enhanced by hypoxia stimulation. Vascularization, apoptosis, and histological injury were all significantly improved in hypoMSC injected group compared with that in control and MSC injected groups. Finally, the renal function was also significantly improved in hypoMSC injected group compared with that in the other two groups as assessed by the serum creatinine and BUN levels.
منابع مشابه
3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney
Three-dimensional (3D) cell culture has been reported to increase the therapeutic potentials of mesenchymal stem cells (MSCs). In this study, we aimed to investigate the therapeutic effects of 3D spheroids of human adipose-derived MSCs for acute kidney injury (AKI). In vitro studies indicated that 3D spheroids of MSCs produced higher levels of extracellular matrix proteins (including collagen I...
متن کاملHypoxia and Dysregulated Angiogenesis in Kidney Disease.
BACKGROUND Accumulating evidence has demonstrated that renal hypoxia has a crucial role in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and AKI-to-CKD transition, ultimately culminating in end-stage kidney disease. Renal hypoxia in progressive CKD is intricately linked to persisting capillary loss, which is mainly due to dysregulated angiogenesis. SUMMARY In CK...
متن کاملNuclear factor erythroid-2 related factor 2 overexpressed mesenchymal stem cells transplantation, improves renal function, decreases injuries markers and increases repair markers in glycerol-induced Acute kidney injury rats
Objective(s):Recently cell therapy is a promising therapeutic modality for many types of disease including acute kidney injury (AKI). Due to the unique biological properties, mesenchymal stem cells (MSCs) are attractive cells in this regard. This study aims to transplant MSCs equipped with nuclear factor E2-related factor 2 (Nrf2) in rat experimental models of acute kidney and evaluate regenera...
متن کاملComparison of Angiogenic, Cytoprotective, and Immunosuppressive Properties of Human Amnion- and Chorion-Derived Mesenchymal Stem Cells
Although mesenchymal stem cells (MSCs) can be obtained from the fetal membrane (FM), little information is available regarding biological differences in MSCs derived from different layers of the FM or their therapeutic potential. Isolated MSCs from both amnion and chorion layers of FM showed similar morphological appearance, multipotency, and cell-surface antigen expression. Conditioned media o...
متن کاملMesenchymal stem cells in acute kidney injury.
The potential role of mesenchymal stem cells (MSCs, also called mesenchymal stromal cells) in endogenous repair and cell-based therapies for acute kidney injury (AKI) is under intensive investigation. Preclinical studies indicate that administered MSCs both ameliorate renal injury and accelerate repair. These versatile cells home to sites of injury, where they modulate the repair process. The m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014